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Abstract
We study periodic chain clusters comprising equal numbers of two-dimensional
bubbles of two different areas, with at most four bubbles per period. The cluster
energies are calculated as a function of the ratio λ of bubble areas and of the
imposed strain ε. We identify the clusters of lowest energy for each (λ, ε),
and obtain the Young’s moduli of all clusters in their unstrained state. An
approximately linear correlation has been found between the Young’s moduli
and the cluster binding energy per unit area, similar to that which holds for
crystalline solids (e.g. metals).

1. Introduction

Bubble clusters—foams—have attracted considerable attention, particularly because they are
paradigms for a variety of cellular structures, from polycrystals to biological tissues. Two main
types of bubble cluster have been discussed in the literature: finite, and unbounded periodic.
Most studies have dealt with two-dimensional clusters, which are easier to analyse and study
experimentally. The main problems addressed have been (a) ageing [1,2], (b) deformation [3]
and (c) the calculation of cluster energies [4–6], particularly with a view to identifying
the lowest-energy cluster for a given composition (i.e. for given numbers and sizes of the
assembled bubbles). This requires solving clusters for their equilibrium configurations: once
their topology (specified by the number and sequence of bubble contacts) and bubble areas
(assuming incompressibility) have been fixed, their geometry still needs to be found [7].
Different geometries correspond to different strain (stress) states; note that there may not
be a solution for certain area ratios, see below.

The necessary conditions for the equilibrium of a cluster are known as Plateau’s laws [8].
They relate to the balance of pressures and film tensions, leading to films of constant mean
curvature meeting three at a time at 120◦ angles. These conditions, together with the sizes of
individual bubbles, give as many equations as there are independent variables [7]. However,
as recenlty shown by Weaire et al [9], this does not necessarily imply a unique solution (i.e.,
geometry) for the cluster. For unbounded clusters, on the other hand, the number of variables
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exceeds the number of equations [7], and there is a whole range of strained configurations that
satisfy Plateau’s laws, for given topology and bubble areas.

Clusters are usually assumed to be ‘dry’, with negligible Plateau borders, and containing
an incompressible gas of constant energy. The free energy E of a cluster is then just its surface
free energy,

E = γP, (1)

where P is the total area (length) of films.
Finite clusters are embedded in an atmosphere at pressure p0. At equilibrium, each bubble

i of size Si (volume or area) has an internal pressure pi . The following relation then holds for
a finite free cluster [4, 10]:

E = d

d − 1

∑
i

Si(pi − p0), (2)

where d = 2 or 3 is the dimensionality of the cluster. Periodic unbounded clusters are
defined by a unit cell—the repeating unit—containing N bubbles. For such clusters there is
no ‘outside’, hence no p0, and equation (2) no longer applies.

In this paper we discuss a third category of two-dimensional bubble clusters, which
we name chain clusters, consisting of periodic strings of bubbles with N -bubble unit cells.
Such chain clusters are unbounded (and periodic) in one direction, but finite in the transverse
direction; they are immersed in the foam gas at pressure p0 (see figure 1 for some examples).
As shown elsewhere [7], the Plateau rules do not completely determine the geometry of a chain
cluster of given topology and bubble sizes: as for unbounded two-dimensional periodic clusters,
it is necessary to specify the strain, which in this case is a single scalar quantity. For every
chain cluster that we have considered, there is only one unstrained (or free) configuration for
which the energy reaches a minimum. Our analysis concentrates on calculating the energy as
a function of the imposed strain for each possible topology; from this we extract the unstrained
geometries (i.e. those corresponding to the minima of the energy) and the Young’s moduli.

Chain clusters mimic long linear molecules where the cohesion between ‘atoms’ (i.e.
bubbles) is due to the decrease in surface energy when they come together to form the ‘molecule’
(i.e. the foam cluster). Because they are easier to analyse than periodic two-dimensional
clusters, they allow us more readily to identify issues to explore in higher dimensions.

2. Chain clusters under consideration

We discuss two-dimensional chain clusters containing equal numbers of bubbles of two
different areas, A1 and A2, each bubble being composed of at least two films. Only those
clusters are considered in which all bubbles of a given area have the same topology, i.e. the
same neighbours, and also the same (internal) pressure. In particular, adjacent bubbles of
the same area are separated by a straight boundary at equilibrium. This requirement implies
that our chain clusters have at most four bubbles per unit cell3, i.e. N = 4. Even with these
restrictions, we have been able to draw 22 possible topologies, shown schematically in figure 2.

Chain clusters of this type fall into one of two main classes: those with (figures 2(a), (c))
and those without (figures 2(b), (d)) bubbles that go across the cluster, i.e. that contact the
outside gas on either side of the chain. Each of these classes in turn divides into two sub-
classes, depending on whether the cluster contains ‘inner’ bubbles (i.e. those that do not

3 Readers can easily convince themselves by constructing, for example, cluster 4343. Re-draw cluster 4242 in
figure 1(b) with six bubbles per unit cell: clearly all bubbles of size, say, A1 are no longer equivalent, as the ‘middle’
bubble borders on two other bubbles of size A1, whereas each of the latter borders on one bubble of size A1 and one
of size A2. Likewise for bubbles of size A2.
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Figure 1. Chain clusters of types 2181 and 4242 (see the text and figure 2 for notation). The films
are arcs of circle meeting at 120◦ angles at the vertices. τ is the period.

contact the outside) or not. Conventionally, we take A1 = 1 as the area of the bubble with
more films, and set the area of the other bubble A2 = λ. A simple notation is introduced for
clusters which tells how many films there are per bubble and how many bubbles of each area
there are per unit cell. Thus for example 4141 means ‘one four-sided bubble of area λ plus one
four-sided bubble of area 1 per unit cell’. Likewise, 3272 means ‘two three-sided bubbles of
area λ plus two seven-sided bubbles of area 1 per unit cell’. In a few cases, for example 3262,
there is more than one topology consistent with a given number of films per bubble and a given
number of bubbles of each area per cell; these we distinguish by the additional subscript A,
B and C, as appropriate. Note that clusters 4141 and 5151 are unique in that all their bubbles
have the same topology; for λ = 1, they consist of identical bubbles.

If τ is the symmetry translation vector along the chain cluster, we define t = τ/n, where
n = N/2 = 1 or 2 is the number of pairs of bubbles per period; t ≡ |t| is thus the length
along the cluster axis per pair of bubbles. For each of the clusters under consideration we
write down the equations that express Plateau’s laws, and those for the areas of the bubbles, in
terms of the lengths of films and the angles at which they meet (see the appendix for details).
The number of variables exceeds the number of equations by one [7] (clusters containing
two-sided bubbles—for example, 2282—or pairs of adjacent three-sided bubbles have trivial
extra variables specifying their location on the edges they ‘decorate’, which do not enter the
expression for the energy). We take t as the free, or independent, variable: it defines the
strain ε ≡ log(t/t∗), where t∗ corresponds to a cluster with no applied forces, and therefore
minimum energy. For t < t∗ the cluster is compressed, while for t > t∗ it is stretched.

Most clusters exhibit some symmetries (e.g., with respect to the chain axis), which
simplifies calculations. In general, a cluster of given topology may exist only in certain ranges
of t and λ, at the ends of which the lengths of one or more of its films vanish. We call the
cluster that has lowest energy in a region of (λ, t) space the minimal cluster in that region. All
clusters are assumed to be stable in the ranges of λ where they are realizable; this is confirmed
a posteriori by the fact that their perimeters are convex functions of t for all λ investigated.

3. Young’s modulus of chain clusters

It is interesting to compare the stiffnesses—i.e. the Young’s moduli—along t of the various
chain clusters. Start by introducing an average cross-sectional width of the cluster w, given by

w = A1 + A2

2t
= 1 + λ

2t
. (3)
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Figure 2. The 22 chain clusters with bubbles of areas 1 and λ in one-to-one proportion and at
most four bubbles per period. They divide into four classes, depending on whether they contain
(a) bubbles that span the cluster width but no inner bubbles, (b) neither bubbles that span the cluster
width nor inner bubbles, (c) bubbles that span the cluster width and inner bubbles or (d) inner
bubbles but no bubbles that span the cluster width (see the text for details). In this schematic
representation only the topologies (i.e. the bubble connectivities) are rendered accurately: in the
actual clusters, all films are arcs of circle meeting at 120◦ angles at the vertices (see figure 1). Note
that clusters 2161 and 2262 have the same perimeter.

The strain increment along the chain is dε = dt/t , which is achieved by applying force F per
pair of bubbles, along the axis of the cluster, with

F = −dE

dt
. (4)
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Figure 3. P(t), the perimeter per pair of bubbles as a function of strain, for cluster 5151 of figure 2
with λ = 1: the minimum perimeter P ∗ is attained at t = t∗.

Note that equation (2) is only valid when F = 0; if F �= 0 (t �= t∗), it has to be modified to
include a strain energy term. We define Young’s modulus as

Y = dF

dw
= − 1

w

dF

dε
= − t

w

dF

dt
. (5)

Simple manipulations lead to

Y

γ
= 2t2

1 + λ

d2P

dt2
. (6)

We have calculated the Young’s moduli at the minima of the P(λ, t) curves, Y ∗ ≡ Y (λ, t∗).
In these cases Y ∗ is the maximum of Y (λ, t) at fixed λ.

4. Results and discussion

We performed calculations for 0.1 � λ � 8 and 0.01 � t � 5. Figure 3 shows a typical P(t)

curve (≡P(λ, t) at fixed λ), for cluster 5151 of figure 2. The perimeter P(t) has a minimum,
P ∗, at t = t∗. From equation (6), the Young’s modulus Y ∗ is proportional to the curvature
of P(t) at the minimum. In figure 4 we plot, for λ = 0.125, P(t) for all minimal clusters—
clusters that have the least perimeter in some range of t (0.01 � t � 5). The transitions
between minimal clusters can be either ‘continuous’ (if the corresponding P(t) curves cross)
or ‘discontinuous’ (if there is a jump between curves). For illustration purposes we have also
included in figure 4 cluster 2282, which is never minimal; the curves for this and all other
non-minimal clusters obviously lie above those for the minimal clusters. Similar pictures are
obtained for the other values of λ investigated (0.1 � λ � 8). Note that clusters may ‘lose’
their minima as λ is varied (i.e. such minima may occur at values of t for which one or more of
the films have zero or negative lengths), but remain stable throughout (in the sense that P(t)

is always convex).
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Figure 4. P(t) for all clusters that are minimal in some range of t for λ = 0.125. The curve for
the non-minimal cluster 2282 is included for illustration purposes. Transitions between different
minimal clusters are marked with arrows and the corresponding values of t : these can be either
continuous, when two curves cross, or discontinuous, when there is a jump from one curve to the
other.

The ‘phase diagram’ of figure 5 summarizes which cluster is minimal in which region(s)
of the (λ, t) plane, for 0.01 � t � 5 and 0.1 � λ � 8. There are a total of nine minimal
clusters, with one of them, (3262)B , covering a rather small area. It is also noteworthy that
clusters 5151 and 4262 are re-entrant, in the sense that for some λ they are each minimal in
two disjoint ranges of t . Cluster 4242 is minimal in a larger region than any other, mostly at
intermediate to large t ; if λ is small, however, the minimal cluster at larger t is 2272. Still, it
is important to bear in mind that some, or all, of these features may change for λ beyond the
range that we have explored.

How P ∗ and Y ∗ vary as a function of λ can be seen in figures 6 and 7, respectively. Recall
that any cluster may exist only in a certain range of λ, at the ends of which the lengths of
one or more of its films go to zero. As expected, P ∗ increases with increasing λ, while Y ∗

decreases—i.e. all clusters go ‘softer’ as the bubbles with fewer sides grow bigger.
We have attempted to correlate Y ∗/γ with the binding energy per unit area, defined as

Eb

γ
= 2

√
π(1 +

√
λ) − P ∗

1 + λ
, (7)

where the first term is the energy of separate (circular) bubbles of areas 1 and λ. In figure 8(a)
we plot Y ∗/γ versus Eb/γ , using the data from figures 6 and 7: there is an approximately
linear correlation. Strikingly, a very similar result is obtained for metals (Y ∼ 2.55Eb, see
figure 8(b)) [11], which is due to the fact that the position of the minimum of the interatomic
potential (i.e. the atomic radius) varies little across the periodic table. We therefore speculate
that the same correlation in chain clusters follows from the likewise small spread of t∗, the
position of the minimum of P(t) (as figure 4 illustrates).
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Figure 5. ‘Phase diagram’ of chain clusters in the (λ, t) plane, showing where each of them is
minimal for 0.01 � t � 5 and 0.1 � λ � 8 (note the logarithmic scale along the horizontal axis).
The width (i.e. λ-extent) of the (3262)B region has been exaggerated for clarity. Recall that t is the
length along the cluster axis per pair of bubbles.

(This figure is in colour only in the electronic version)

5. Summary

We have calculated the geometries of periodic chain clusters of all possible topologies
compatible with a unit cell containing no more than four bubbles of two different areas, as a
function of the area ratio and applied strain. The energies and Young’s moduli of the clusters
have also been computed. The Young’s modulus was shown to correlate nearly linearly with
the cluster binding energy per unit area. This type of analysis can, in principle, be extended—
at a price—to two-dimensional clusters with two directions of periodicity. Further extension
to three-dimensional periodic clusters, including three-dimensional chain clusters, would be
even harder, probably requiring Surface Evolver [12] calculations.
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Appendix. Chain cluster calculations

A two-dimensional chain cluster of a given topology is solved as follows. First we define a
cluster skeleton by connecting the vertices of the cluster by straight-line segments. We thus
obtain a network with the topology (connectivity) of the cluster. The lengths of these segments
are denoted Li , and the angles between segments (i and k, say) at triple points by αik . The
Li and αik are of course not independent, and we can choose either as the free variables when
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Figure 6. (a) P ∗ versus λ for all clusters, grouped as in figure 2. (b) Smallest P ∗ (‘minimal’, or
unstrained, clusters) in each range of λ. Note the log-lin scale.

introducing the equations that relate them. Next, we associate with each line segment a radius
Ri and a subtended angle 2θi of the film (see figure 9), with an appropriate sign convention.
We have

Li = 2Ri sin θi . (A.1)
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Figure 7. (a) Y ∗/γ versus λ for all clusters, grouped as in figure 2. (b) Smallest (lower set of
curves) and largest (upper set of curves) Y ∗/γ in each range of λ; the curves for clusters 4141 and
4242, and (3282)B and (2292)A,B,C , are nearly coincident. Note the log-lin scale.

To solve the cluster we first impose angles of 120◦ between films meeting at vertices, leading
to equations of the form

α12 + θ1 + θ2 = 120◦, (A.2)
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Figure 8. (a) Plot of Y ∗/γ versus binding energy per unit area Eb/γ for all clusters and for all
λ. The straight solid line has the same slope as in part (b) below. (b) Y ∗ versus binding energy
Eb per unit volume for 30 different metals as labelled (from [11]). The straight line is a linear fit
excluding the data point for tungsten; its slope is ≈2.55.

where α12 is the angle between two Li segments with subtended angles 2θ1 and 2θ2. We also
impose the balance of pressures, i.e. zero sum of curvatures at each vertex:

∑
i

1

Ri

= 0. (A.3)
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Figure 9. Three films (thick solid curves), each of radius Ri and subtended angle 2θi , meeting at
120◦ at a vertex. Their chords (thick dashed lines) meet at angles αik .

Finally, we write down the equations for the areas of the bubbles in terms of Li , αi and θi .
The number of variables exceeds the number of equations by one. The free variable is chosen
to be t , the length along the chain per pair of bubbles. An equation is also derived for the
perimeter as a function of the same variables, Li , αi and θi . This was minimized to find t∗ and
P ∗ for a given λ, using the routine DONLP2 [13]. Alternatively, the minimum can be obtained
directly from equation (2). To find the full functional dependence P(λ, t), we fixed λ and
solved the set of equations (A.1)–(A.3) at discrete points in the allowed ranges of t (spacing
�t = 0.01) for each cluster, using MINPACK routine HYBRD [14]. From these curves Y ∗

was then calculated by numerical differentiation: three-, five- and 11-point centred-differences
formulae, namely

d2P

dt2

∣∣∣∣
t=ti

≈




1

(�t)2
[P(ti+1) − 2P(ti) + P(ti−1)] (3-point)

1

12(�t)2
[−P(ti+2) + 16P(ti+1) − 30P(ti)

+ 16P(ti−1) − P(ti−2)] (5-point)
1

2.52 × 104(�t)2
[8P(ti+5) − 125P(ti+4)

+103P(ti+3)

−6 × 103P(ti+2) + 4 × 104P(ti+1)

−73766P(ti) + 4 × 104P(ti−1)

−6 × 103P(ti−2) + 103P(ti−3)

−125P(ti−4) + 8P(ti−5)] (11-point),

(A.4)

gave results differing by at most 0.5%; figure 7 shows those for five points.
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